Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
0F E4 /r1 PMULHUW mm1, mm2/m64 | RM | V/V | SSE | Multiply the packed unsigned word integers in mm1 register and mm2/m64, and store the high 16 bits of the results in mm1. |
66 0F E4 /r PMULHUW xmm1, xmm2/m128 | RM | V/V | SSE2 | Multiply the packed unsigned word integers in xmm1 and xmm2/m128, and store the high 16 bits of the results in xmm1. |
VEX.NDS.128.66.0F.WIG E4 /r VPMULHUW xmm1, xmm2, xmm3/m128 | RVM | V/V | AVX | Multiply the packed unsigned word integers in xmm2 and xmm3/m128, and store the high 16 bits of the results in xmm1. |
VEX.NDS.256.66.0F.WIG E4 /r VPMULHUW ymm1, ymm2, ymm3/m256 | RVM | V/V | AVX2 | Multiply the packed unsigned word integers in ymm2 and ymm3/m256, and store the high 16 bits of the results in ymm1. |
Notes: 1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RM | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
RVM | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
Performs a SIMD unsigned multiply of the packed unsigned word integers in the destination operand (first operand) and the source operand (second operand), and stores the high 16 bits of each 32-bit intermediate results in the destination operand. (Figure 4-8 shows this operation when using 64-bit operands.)
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15). Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an MMX technology register.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged. VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, otherwise the instruction will #UD. VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.
SRC | X3 | X2 | X1 | X0 |
DEST | Y3 Z2 = X2 ∗ Y2 | Y2 | Y1 Z1 = X1 ∗ Y1 | Y0 Z0 = X0 ∗ Y0 |
DEST
Z3[31:16]PMULHUW and PMULHW Instruction Operation Using 64-bit Operands | Z2[31:16] | Z1[31:16] | Z0[31:16]Figure 4-8. |
PMULHUW (with 64-bit operands) TEMP0[31:0] ← TEMP1[31:0] ← TEMP2[31:0] ← TEMP3[31:0] ← DEST[15:0] ← DEST[31:16] ← DEST[47:32] ← DEST[63:48] ← PMULHUW (with 128-bit operands) TEMP0[31:0] ← TEMP1[31:0] ← TEMP2[31:0] ← TEMP3[31:0] ← TEMP4[31:0] ← TEMP5[31:0] ← TEMP6[31:0] ← TEMP7[31:0] ← DEST[15:0] ← DEST[31:16] ← DEST[47:32] ← DEST[63:48] ← DEST[79:64] ← DEST[95:80] ← DEST[111:96] ← DEST[127:112] ← TEMP7[31:16]; VPMULHUW (VEX.128 encoded version) TEMP0[31:0] ← SRC1[15:0] * SRC2[15:0] TEMP1[31:0] ← SRC1[31:16] * SRC2[31:16] TEMP2[31:0] ← SRC1[47:32] * SRC2[47:32] TEMP3[31:0] ← SRC1[63:48] * SRC2[63:48] TEMP4[31:0] ← SRC1[79:64] * SRC2[79:64] TEMP5[31:0] ← SRC1[95:80] * SRC2[95:80] TEMP6[31:0] ← SRC1[111:96] * SRC2[111:96] TEMP7[31:0] ← SRC1[127:112] * SRC2[127:112] DEST[15:0] ← TEMP0[31:16] DEST[31:16] ← TEMP1[31:16] DEST[47:32] ← TEMP2[31:16] DEST[63:48] ← TEMP3[31:16] DEST[79:64] ← TEMP4[31:16] DEST[95:80] ← TEMP5[31:16] DEST[111:96] ← TEMP6[31:16] DEST[127:112] ← TEMP7[31:16] DEST[VLMAX-1:128] ← 0 PMULHUW (VEX.256 encoded version) TEMP0[31:0] ← SRC1[15:0] * SRC2[15:0] TEMP1[31:0] ← SRC1[31:16] * SRC2[31:16] TEMP2[31:0] ← SRC1[47:32] * SRC2[47:32] TEMP3[31:0] ← SRC1[63:48] * SRC2[63:48] TEMP4[31:0] ← SRC1[79:64] * SRC2[79:64] TEMP5[31:0] ← SRC1[95:80] * SRC2[95:80] TEMP6[31:0] ← SRC1[111:96] * SRC2[111:96] TEMP7[31:0] ← SRC1[127:112] * SRC2[127:112] TEMP8[31:0] ← SRC1[143:128] * SRC2[143:128] TEMP9[31:0] ← SRC1[159:144] * SRC2[159:144] TEMP10[31:0] ← SRC1[175:160] * SRC2[175:160] TEMP11[31:0] ← SRC1[191:176] * SRC2[191:176] TEMP12[31:0] ← SRC1[207:192] * SRC2[207:192] TEMP13[31:0] ← SRC1[223:208] * SRC2[223:208] TEMP14[31:0] ← SRC1[239:224] * SRC2[239:224] TEMP15[31:0] ← SRC1[255:240] * SRC2[255:240] DEST[15:0] ← TEMP0[31:16] DEST[31:16] ← TEMP1[31:16] DEST[47:32] ← TEMP2[31:16] DEST[63:48] ← TEMP3[31:16] DEST[79:64] ← TEMP4[31:16] DEST[95:80] ← TEMP5[31:16] DEST[111:96] ← TEMP6[31:16] DEST[127:112] ← TEMP7[31:16] DEST[143:128] ← TEMP8[31:16] DEST[159:144] ← TEMP9[31:16] DEST[175:160] ← TEMP10[31:16] DEST[191:176] ← TEMP11[31:16] DEST[207:192] ← TEMP12[31:16] DEST[223:208] ← TEMP13[31:16] DEST[239:224] ← TEMP14[31:16] DEST[255:240] ← TEMP15[31:16]
PMULHUW: | __m64 _mm_mulhi_pu16(__m64 a, __m64 b) |
(V)PMULHUW: | __m128i _mm_mulhi_epu16 ( __m128i a, __m128i b) |
VPMULHUW: | __m256i _mm256_mulhi_epu16 ( __m256i a, __m256i b) |
None.
None.
See Exceptions Type 4; additionally
#UD | If VEX.L = 1. |